Scaling between Viscosity and Hydrodynamic / Magnetic Forces in Magnetic Fluids*
نویسندگان
چکیده
The aim of this work is the investigation of the magnetorheological behavior, under both simple steadyand oscillatory-shear flow regimes, of fluids composed by micron-sized iron particles (average diameter 930 ± 330 nm) dispersed in silicone oil. Magnetic fields ranging from 279 A/m (0.35 mT) to 1727 A/m (2.17 mT) were applied to the suspensions. The effect of silica nanoparticles as stabilizer of the suspensions has also been considered. The study has been made by the scaling between the viscosity of the suspension and the ratio of hydrodynamic to magnetic forces acting on the dispersed particles, given by the dimensionless Mason number (Mn), and interpreted in terms of the chainlike model taken from the theory of Martin and Anderson (J. Chem. Phys. 104 (1996) 4814-4827). The model is quite well accomplished for iron suspensions of different (20 % and 30 %) volume fraction without any stabilizing agent. The presence of added silica nanoparticles in the suspension hinders the formation of regular iron structures induced by the magnetic field, especially at the lowest applied magnetic fields. Thus the model becomes not applicable to these cases. Viscometry has been shown to be more adequate than oscillometry for scaling the viscous properties of magnetorheological suspensions with microscopic interparticle forces in terms of Mn number.
منابع مشابه
Shear flow behavior of confined magnetorheological fluids at low magnetic field strengths
Magnetorheological (MR) fluids are field-responsive suspensions of magnetizable particles which rheological properties can be dramatically altered by applying external magnetic fields (Phulé and Ginder 1998). Under the presence of a magnetic field, anisotropic chainlike structures result from field-induced particle magnetization as a consequence of the permeability mismatch between particle and...
متن کاملMHD Turbulence: Scaling Laws and Astrophysical Implications
Turbulence is the most common state of astrophysical flows. In typical astrophysical fluids, turbulence is accompanied by strong magnetic fields, which has a large impact on the dynamics of the turbulent cascade. Recently, there has been a significant breakthrough on the theory of magnetohydrodynamic (MHD) turbulence. For the first time we have a scaling model that is supported by both observat...
متن کاملNanofluid Flow in a Semi-porous Channel in the Presence of Uniform Magnetic Field
In this paper, the problem of laminar nanofluid flow in a semi-porous channel is investigated analytically using Homotopy Perturbation Method (HPM). This problem is in the presence of transverse magnetic field. Here, it has been attempted to show the capabilities and wide-range applications of the Homotopy Perturbation Method in comparison with the numerical method in solving such problems. The...
متن کاملDamping Force Modeling and Suppression of Self-Excited Vibration due to Magnetic Fluids Applied in the Torque Motor of a Hydraulic Servovalve
As a key component of hydraulic control systems, hydraulic servovalves influence their performance significantly. Unpredictable self-excited noise inside hydraulic servovalves may cause instability and even failure. Being functional, with higher saturation magnetization and increased viscosity when exposed to a magnetic field, magnetic fluids (MFs) have been widely used in dampers, sealing, and...
متن کاملImpact of Magnetic Field on Convective Flow of a Micropolar Fluid with two Parallel Heat Source
A numerical study is performed to analysis the buoyancy convection induced by the parallel heated baffles in an inclined square cavity. The two side walls of the cavity are maintained at a constant temperature. A uniformly thin heated plate is placed at the centre of the cavity. The horizontal top and bottom walls are adiabatic. Numerical solutions of governing equations are obtained using the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007